把 CPU 作为大脑的话,CPU 缓存是人的瞬时记忆,内存是人的短时记忆,磁盘是人的长时记忆。那么 CPU 如何与内存交互?

什么是内存

内存(Memory)是计算机中最重要的部件之一,它是程序与 CPU 进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存对计算机的影响非常大,内存又被称为 主存,其作用是存放 CPU 中的运算数据,以及与硬盘等外部存储设备交换的数据。只要计算机在运行中,CPU 就会把需要运算的数据调到主存中进行运算,当运算完成后 CPU 再将结果传送出来,主存的运行也决定了计算机的稳定运行。

内存是易失性存储,与磁盘不同,掉电则失去所有数据。

内存的物理结构

内存的内部是由各种 IC 电路组成的,它的种类很庞大,但是其主要分为三种存储器

  • 随机存储器(RAM): 内存中最重要的一种,表示既可以从中读取数据,也可以写入数据。当机器关闭时,内存中的信息会 丢失
  • 只读存储器(ROM):ROM 一般只能用于数据的读取,不能写入数据,但是当机器停电时,这些数据不会丢失。
  • 高速缓存(Cache):Cache 也是我们经常见到的,它分为一级缓存(L1 Cache)、二级缓存(L2 Cache)、三级缓存(L3 Cache)这些数据,它位于内存和 CPU 之间,是一个读写速度比内存 更快 的存储器。当 CPU 向内存写入数据时,这些数据也会被写入高速缓存中。当 CPU 需要读取数据时,会直接从高速缓存中直接读取,当然,如需要的数据在 Cache 中没有,CPU 会再去读取内存中的数据。

内存 IC 是一个完整的结构,它内部也有电源、地址信号、数据信号、控制信号和用于寻址的 IC 引脚来进行数据的读写。下面是一个虚拟的 IC 引脚示意图

物理模型

图中 VCC 和 GND 表示电源,A0 - A9 是地址信号的引脚,D0 - D7 表示的是控制信号、RD 和 WR 都是好控制信号,我用不同的颜色进行了区分,将电源连接到 VCC 和 GND 后,就可以对其他引脚传递 0 和 1 的信号,大多数情况下,+5V 表示 1,0V 表示 0

我们都知道内存是用来存储数据,那么这个内存 IC 中能存储多少数据呢?D0 - D7 表示的是数据信号,也就是说,一次可以输入输出 8 bit = 1 byte 的数据。A0 - A9 是地址信号共十个,表示可以指定 00000 00000 - 11111 11111 共 2 的 10 次方 = 1024 个地址。每个地址都会存放 1 byte 的数据,因此我们可以得出内存 IC 的容量就是 1 KB。

内存的读写过程

让我们把关注点放在内存 IC 对数据的读写过程上来吧!我们来看一个对内存 IC 进行数据写入和读取的模型

读写过程

来详细描述一下这个过程,假设我们要向内存 IC 中写入 1byte 的数据的话,它的过程是这样的:

  • 首先给 VCC 接通 +5V 的电源,给 GND 接通 0V 的电源,使用 A0 - A9 来指定数据的存储场所,然后再把数据的值输入给 D0 - D7 的数据信号,并把 WR(write) 的值置为 1,执行完这些操作后,即可以向内存 IC 写入数据
  • 读出数据时,只需要通过 A0 - A9 的地址信号指定数据的存储场所,然后再将 RD 的值置为 1 即可。
  • 图中的 RD 和 WR 又被称为控制信号。其中当 WR 和 RD 都为 0 时,无法进行写入和读取操作。

内存的现实模型

为了便于记忆,我们把内存模型映射成为我们现实世界的模型,在现实世界中,内存的模型很想我们生活的楼房。在这个楼房中,1 层可以存储一个字节的数据,楼层号就是 地址,下面是内存和楼层整合的模型图

内存模型

我们知道,程序中的数据不仅只有数值,还有 数据类型 的概念,从内存上来看,就是占用内存大小(占用楼层数)的意思。即使物理上强制以 1 个字节为单位来逐一读写数据的内存,在程序中,通过指定其数据类型,也能实现以特定字节数为单位来进行读写。、

内存与磁盘的关系

计算机最主要的存储部件是内存和磁盘。 磁盘中存储的程序必须加载到内存中才能运行 ,在磁盘中保存的程序是无法直接运行的,这是因为负责解析和运行程序内容的 CPU 是需要通过程序计数器来指定内存地址从而读出程序指令的。

1ae073cb-2a7f-4404-8f8a-681fed48f2c3

磁盘缓存

我们上面提到,磁盘往往和内存是互利共生的关系,相互协作,彼此持有良好的合作关系。每次内存都需要从磁盘中读取数据,必然会读到相同的内容,所以一定会有一个角色负责存储我们经常需要读到的内容。 我们大家做软件的时候经常会用到 缓存技术,那么硬件层面也不例外,磁盘也有缓存,磁盘的缓存叫做 磁盘缓存

磁盘缓存指的是把从磁盘中读出的数据存储到内存的方式,这样一来,当接下来需要读取相同的内容时,就不会再通过实际的磁盘,而是通过磁盘缓存来读取。某一种技术或者框架的出现势必要解决某种问题的,那么磁盘缓存就大大 改善了磁盘访问的速度

3cfa9bac-5a56-44ed-b3f9-49db0d00b005

虚拟内存

虚拟内存的目的是为了让物理内存扩充成更大的逻辑内存,从而让程序获得更多的可用内存。它是内存和磁盘交互的第二个媒介。虚拟内存是指把磁盘的一部分作为 假想内存 来使用。这与磁盘缓存是假想的磁盘(实际上是内存)相对,虚拟内存是假想的内存(实际上是磁盘)。

为了更好的管理内存,操作系统将内存抽象成地址空间。每个程序拥有自己的地址空间,这个地址空间被分割成多个块,每一块称为一页。这些页被映射到物理内存,但不需要映射到连续的物理内存,也不需要所有页都必须在物理内存中。当程序引用到不在物理内存中的页时,由硬件执行必要的映射,将缺失的部分装入物理内存并重新执行失败的指令。

从上面的描述中可以看出,虚拟内存允许程序不用将地址空间中的每一页都映射到物理内存,也就是说一个程序不需要全部调入内存就可以运行,这使得有限的内存运行大程序成为可能。例如有一台计算机可以产生 16 位地址,那么一个程序的地址空间范围是 0~64K。该计算机只有 32KB 的物理内存,虚拟内存技术允许该计算机运行一个 64K 大小的程序。

虚拟地址映射

虚拟内存与内存的交换方式

虚拟内存的方法有 分页式分段式 两种。Windows 采用的是分页式。该方式是指在不考虑程序构造的情况下,把运行的程序按照一定大小的页进行分割,并以 为单位进行置换。在分页式中,我们把磁盘的内容读到内存中称为 Page In,把内存的内容写入磁盘称为 Page Out。Windows 计算机的页大小为 4KB ,也就是说,需要把应用程序按照 4KB 的页来进行切分,以页(page)为单位放到磁盘中,然后进行置换。

60a51c98-4dbd-4813-a3a3-172c159f2174

为了实现内存功能,Windows 在磁盘上提供了虚拟内存使用的文件(page file,页文件)。该文件由 Windows 生成和管理,文件的大小和虚拟内存大小相同,通常大小是内存的 1 - 2 倍。

地址映射

内存管理单元(MMU)管理着地址空间和物理内存的转换,其中的页表(Page table)存储着页(程序地址空间)和页框(物理内存空间)的映射表。

一个虚拟地址分成两个部分,一部分存储页面号,一部分存储偏移量。

下图的页表存放着 16 个页,这 16 个页需要用 4 个比特位来进行索引定位。例如对于虚拟地址(0010 000000000100),前 4 位是存储页面号 2,读取表项内容为(110 1),页表项最后一位表示是否存在于内存中,1 表示存在。后 12 位存储偏移量。这个页对应的页框的地址为 (110 000000000100)。

memory_paging

virtual_2_physical

参考文献

https://www.cnblogs.com/felixfang/p/3420462.html